hextra/exampleSite/assets/example.ipynb

225 lines
87 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What is the Jupyter Notebook?\n",
"\n",
"The Jupyter Notebook is an **interactive computing environment** that enables users to author notebook documents that include:\n",
"- Live code\n",
"- Interactive widgets\n",
"- Plots\n",
"- Narrative text\n",
"- Equations\n",
"- Images\n",
"- Video\n",
"\n",
"These documents provide a **complete and self-contained record of a computation** that can be converted to various formats and shared with others using email, version control systems (like Git/[GitHub](https://github.com)) or [nbviewer.jupyter.org](https://nbviewer.jupyter.org)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Visualization\n",
"\n",
"Below is an example of a simple data visualization using the Seaborn library."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Matplotlib is building the font cache; this may take a moment.\n"
]
},
{
"data": {
"text/plain": [
"<seaborn.axisgrid.FacetGrid at 0x12830caa0>"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAHkCAYAAAA3ofpqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADy4UlEQVR4nOzdd3wUdf7H8dfMlmxJbzQpShNFFAtiwYJ6NixgAbue3nn207PgWVBU7He2O3v52bFiw4JnwQbYQBEp0qST3rbvzO+PQCAm9N1skn0/Hw/vyMxk5rvfJDu77/1+P1/Dtm0bEREREREREZE0Yqa6ASIiIiIiIiIiLU2BiIiIiIiIiIikHQUiIiIiIiIiIpJ2FIiIiIiIiIiISNpRICIiIiIiIiIiaUeBiIiIiIiIiIikHQUiIiIiIiIiIpJ2FIiIiIiIiIiISNpRICLSRtm2neomiIiItCm6d4qIyPoUiIi0Qf/73/+45pprGr6eOnUqffv2ZerUqSls1ZZrbe1+44036Nu3L0uXLk11U0REJMHa271z/f/69+/PkCFD+Mc//sFvv/3W6Hjd20RENsyZ6gaIyJZ75plnGn298847M378eHr16pWaBomIiLRy7e3eeeONN7LzzjsDEAqFWLJkCU888QQnnngizzzzDLvtthsABx10EOPHj6e4uDiFrRURaZ0UiIi0A5mZmQ0vfERERGTT2vq9s1evXo3aP3jwYA4//HBGjBjB6NGjee+993A4HOTn55Ofn5+6hoqItGKaMiPSxpxxxhlMmzaNadOmNQz1/eOw3wcffJAjjjiCSZMmMWzYMHbZZReOO+44fvzxR6ZPn85JJ53EgAEDGDZsGN98802j88+dO5fzzz+f3Xffnd13352LLrqIJUuWbLRNQ4cObTJ8d/3/tsWGhjSfccYZnHHGGY3a8MADD3DnnXey7777MmDAAM4991wWLVrU6Ps+//xzRo0axW677cb+++/PjTfeSHV1daNjZsyYwahRo9hll1046KCDeOKJJ7bpMYiISGqly70zOzub8847j4ULFzJt2jSg6ZSZ0aNHc/bZZ/P6669z+OGH079/f4477jgmT57ccJ433niDnXbaiRkzZjBy5Eh22WUXDj74YJ588slG1wuHw9x1110ceOCB9O/fn2OOOYaJEyc2eZzjxo3jrLPOYsCAAVx33XVb9dhERJJBI0RE2pgxY8Zw1VVXNfy7V69e/PLLL02OW7lyJXfccQeXX345Pp+PW265hUsvvRSXy8Xf/vY3OnXq1LD/s88+w+PxsHDhQkaNGsUOO+zAnXfeSSwW4+GHH+aUU07hrbfeoqCgoNk2PfTQQ0QikaQ+7s3x7LPPsscee3D77bdTVVXFbbfdxjXXXMP48eMB+PTTT7ngggs45JBDuO+++6isrOSuu+5i2bJljV7k3XTTTVx66aVcdtllvPLKK9x999307NmTgw8+OFUPTUREtkE63Tv3228/AL7//nv22WefZo+ZOXMmq1ev5tJLLyUzM5P777+fSy65hMmTJ5OTkwOAZVn8/e9/5+yzz+bvf/87r732GnfddRd9+vRhyJAh2LbNRRddxA8//MCll15Kz549mTRpEpdffjmRSITjjz++4XovvPAC55xzDn/5y1/w+/0Jf8wiIltLgYhIG9OrVy8yMzMBNjrUNxgMMmbMGA444AAAfvvtN+69915uu+02TjzxRAACgQCXXnopCxcupF+/fjz00EN4vV6eeeaZhmvss88+HHrooTzxxBONitGtb6eddkrgI9x62dnZ/Pe//8XhcADw+++/8+CDD1JRUUFeXh4PPvhgw+M0DAMAt9vN/fffT2lpacN5rrjiCk455RSgvo8nTZrElClTFIiIiLRR6XTvLCoqAqCkpGSDx9TU1PDGG2/QrVs3AHw+H6effjpTpkzh8MMPB+pX5Lnwwgs56aSTANhjjz2YNGkSn332GUOGDOHrr7/miy++4N///jdHHXUUAEOGDCEYDHLPPfcwbNgwnM76txqdO3fmyiuvTMrjFRHZFpoyI9KO7b777g3/LiwsBGDXXXdt2JabmwvQMGVkypQpDBo0CI/HQywWIxaLkZmZyZ577snXX3+9wevE4/GG45v7r6XssssuDWEIQMeOHYH6F7ihUIhZs2Zx6KGHNoQhAEcddRQffvhhQ/8A7Lnnng3/9nq9FBYWNplWIyIi7VNbv3euXVp4/XvdH+Xn5zeEIdD4frm+gQMHNvzb7XaTn59PIBAA4JtvvsEwDA488MBG7R46dCglJSXMmzev4Xv79eu31Y9HRCSZNEJEpB1b+0nV+rxe7waPr6ysZOLEiU3m/wIbLch22GGHsWzZsg3unzNnziZamhh/fGymWZ/5WpZFVVUVtm1vcOjyps6z9gWmiIi0b2393rly5UpgXcjRnD8+nrXhiWVZjbZ7PJ5GX69/P6ysrMS27UYB0vpWr17dEIT4fL4teAQiIi1HgYiINMjKymLfffflnHPOabJv7bDX5jz88MNJqyGyoRdpdXV1WzQPOTMzE8MwKC8vb7Q9HA4zZcqURp/+iYiIbK7Wdu9cOyplr732Svi515eVlYXP5+PZZ59tdn/37t2Ten0RkURQICLSBpmm2SQgSIRBgwbx22+/0a9fv4YXcbZtc+WVV9K9e/cNDnnd1pVkNmbtJ3VrP/ECqKqqYv78+QwYMGCzz+P3++nXrx+ffvopF154YcP2yZMnc/HFF/POO+8krtEiItLqpMO9s7a2lqeffpq+fftucORGogwaNIinnnoK27Yb3Y9ff/11Jk2axLhx45J6fRGRRFAgItIGZWdn8+OPP/LNN98ktCjbhRdeyKhRozj//PM55ZRTyMjIYPz48Xz88cc88MADCbvOH3344Yf8+uuvTbafdNJJ9O3bl06dOvGf//ynYZTHo48+utHhyxty6aWXcsEFF3DFFVdw/PHHU1payr/+9S8OPfRQ+vTpw8yZMxPxcEREpBVqb/fO3377jYyMDKB+tOOCBQt47rnnqKio4P77799oDZFEOPDAA9lrr7248MILufDCC+nZsyc//fQTDzzwAEOGDNnodCERkdZCgYhIG3Taaacxc+ZM/vKXv3D77bdTXFyckPPuuOOOvPDCC/z73//m6quvxrZt+vTpw3/+8x8OOeSQhFyjOS+88EKz24844gj8fj8PPPAA48aN44orrqCwsJCzzjqLBQsWsHDhwi26zsEHH8wjjzzCQw89xEUXXUR+fj7HHHMMl1xySSIehoiItGLt7d45duzYhn+7XC6Ki4sZPHgw559/fotMVzFNk8cee4z777+fRx99lLKyMjp06MA555zDRRddlPTri4gkgmGrUqCIiIiIiIiIpBktuysiIiIiIiIiaUeBiIiIiIiIiIikHQUiIiIiIiIiIpJ2FIiIiIiIiIiISNpRICIiIiIiIiIiaUeBiIiIiIiIiIikHQUiIiIiIiIiIpJ2nKluQCrE4xbl5XWpbkabY5oG+fl+ysvrsCw71c1pF9SnyaF+TTz1aeK1dJ8WFWUl5Dy6h249/R0lnvo08dSniac+TY62eh+V1kUjRGSzmaaBYRiYppHqprQb6tPkUL8mnvo08dSn6Uc/88RTnyae+jTx1KfJoX6VRFAgIiIiIiIiIiJpR4GIiIiIiIiIiKQdBSIiIiIiIiIiknYUiIiIiIiIiIhI2lEgIiIiIiIiIiJpR4GIiIiIiIiIiKQdBSIiIiIiIiIiknYUiIiIiIiIiIhI2lEgIiIiIiIiIiJpR4GIiIiIiIiIiKQdBSIiIiIiIiIiknZaVSDy6KOPcsYZZzTa9uuvv3L66aez2267MXToUJ599tkUtU5ERERERERaK4fDIGpDOG4TtcE0jVQ3SVo5Z6obsNYLL7zAfffdx5577tmwraKignPOOYehQ4dy8803M336dG6++Wb8fj8nnHBCClsrIiIiIiIirUXUhu9ml/DqJ/MoqQjSqdDPqMP60K9bHk7lIrIBKQ9EVq1axZgxY5g6dSo9evRotO+VV17B5XIxduxYnE4nPXv2ZPHixTz22GMKRERERERERIQ
"text/plain": [
"<Figure size 1105.12x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Import seaborn\n",
"import seaborn as sns\n",
"\n",
"# Apply the default theme\n",
"sns.set_theme()\n",
"\n",
"# Load an example dataset\n",
"tips = sns.load_dataset(\"tips\")\n",
"\n",
"# Create a visualization\n",
"sns.relplot(\n",
" data=tips,\n",
" x=\"total_bill\", y=\"tip\", col=\"time\",\n",
" hue=\"smoker\", style=\"smoker\", size=\"size\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>total_bill</th>\n",
" <th>tip</th>\n",
" <th>sex</th>\n",
" <th>smoker</th>\n",
" <th>day</th>\n",
" <th>time</th>\n",
" <th>size</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>16.99</td>\n",
" <td>1.01</td>\n",
" <td>Female</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10.34</td>\n",
" <td>1.66</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>21.01</td>\n",
" <td>3.50</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>23.68</td>\n",
" <td>3.31</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>24.59</td>\n",
" <td>3.61</td>\n",
" <td>Female</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" total_bill tip sex smoker day time size\n",
"0 16.99 1.01 Female No Sun Dinner 2\n",
"1 10.34 1.66 Male No Sun Dinner 3\n",
"2 21.01 3.50 Male No Sun Dinner 3\n",
"3 23.68 3.31 Male No Sun Dinner 2\n",
"4 24.59 3.61 Female No Sun Dinner 4"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tips.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Equations\n",
"\n",
"The following is an example of a simple equation using LaTeX.\n",
"\n",
"$$\n",
"E = mc^2\n",
"$$"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}